If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9-3x^2=0
a = -3; b = 0; c = +9;
Δ = b2-4ac
Δ = 02-4·(-3)·9
Δ = 108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{108}=\sqrt{36*3}=\sqrt{36}*\sqrt{3}=6\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{3}}{2*-3}=\frac{0-6\sqrt{3}}{-6} =-\frac{6\sqrt{3}}{-6} =-\frac{\sqrt{3}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{3}}{2*-3}=\frac{0+6\sqrt{3}}{-6} =\frac{6\sqrt{3}}{-6} =\frac{\sqrt{3}}{-1} $
| 2x+6÷5=6 | | 6+7x=6=x-5x | | -29=592a-1)+2a | | 6x-8(12)=-48 | | 8+w/31.25=13 | | 1/2(4x-10)=7x+10 | | s2-11s-28=0 | | 7x+x=9+5x+3+x | | 21=4.50x+3 | | 3x+x+3=9x-5x+3 | | 12.95x+50=15.95x+35 | | 3(x-5)=-2(x+6)+2 | | 1x6x-8x=-7x+4x | | 15x-7=4x-8 | | 6x-2.4=7.2 | | x*0.6=0.3 | | 4x-2(x+4)=5x-4(x-3) | | 64x+2=65x | | 4+5r=-1 | | -3-2x-x=5-7x | | 63=-3(1-2n0 | | -4(5n+3)+2n(-5n-1)=46 | | $62.54=p+0.06p | | 50x+12.95=35+15.95x | | 9m-27=43 | | 7x4-15=5x4-7 | | 5(x+3)=2(x+4)+4 | | 50+12.95x=35+15.95 | | y-9.80=1.42 | | 7x-0.005x=325 | | 3x+3=2x13 | | 4-5c=c=1/2 |